日本中文字幕免费 I 在线视频第一页 I 久久婷婷国产香蕉 I 精品自拍网 I 伊人久久一区二区三区无码 I 久久riav I 强开小嫩苞一区二区三区网站 I 亚洲欧洲老熟女av I 三级在线中文字幕 I 精品啪啪一区 I 久青草无码视频在线观看 I 夜夜操夜夜骑 I 亚洲综合涩 I 霍思燕三级露全乳照 I 99re国产视频 I 九九热最新视频 I 精品久久高清 I 亚洲破处视频 I 婷婷热久久 I 免费看片免费播放国产 I 一本之道色综合网站 I 日日干日日操日日射 I 92午夜福利轻云观看 I 国产亚洲精品一区二区在线观看 I 国产aaa一级片 I 成人福利在线观看 I 午夜老司机福利 I 搜索黄色大片 I 国产色精品久久人妻 I 成年人视频在线免费看 I 日韩免费在线 I 图片 欧美亚洲一区 I 一本色道久久综合亚洲aⅴ蜜桃 I 男女激情链接网站 I 美女的免费水平网站

您好,歡迎進入南京惠言達電氣有限公司網站!
一鍵分享網站到:
您現在的位置:首頁 >> 產品中心 >> >> 繼電器 >> 66.82.8.230.0300理解萬歲finder繼電器66.82.8.012.0000

理解萬歲finder繼電器66.82.8.012.0000

  • 更新時間:  2020-03-02
  • 產品型號:  66.82.8.230.0300
  • 簡單描述
  • 理解萬歲finder繼電器66.82.8.012.0000
    即使白天再忙,也會竭誠耐心為您服務!
    即使加班深夜,也會將報價投入您郵件!
    選擇了惠言達,就是選擇了放心!
    球球:1105020467;V心:18351817879
詳細介紹

理解萬歲finder繼電器66.82.8.012.0000

理解萬歲finder繼電器66.82.8.012.0000

惠言達寄語

所有的失戀都是在給真愛讓路。

DEBNAR    MA210000-700bar
DEBNAR    NW300A 60MV 4ER145A04
DEBNAR    TA 系列 信號變送器
DEBNAR    TYPE:DV3.001.670B  24VDC
DEBNAR    CE 系列 重量傳感器
DEBNAR    NU 系列 信號變送器
DEBNAR    DV4 系列
DEBNAR    PS 系列 電源
DEBNAR    DV 系列 信號放大器
DEBNAR    PZ4 系列
DEBNAR    TAS-331DG
DEBNAR    PVE5 系列
DEBNAR    SU000
DEBNAR    PS05
DEBNAR    EQR72_0-75/150/5A
DEBNAR    PF4 系列
DEBNAR    GZ 系列 信號變送器
DEBNAR    SW000000
DEBNAR    CS020000
DEBNAR    CAT III 300V DC max
DEBNAR    MK000000-00
DEBNAR    SU222
DEBNAR    WD111100
DEBNAR    UR 系列 控制器
DEBNAR    DT3.40x.776B
DEBNAR    TR411111
DEBNAR    PQR72_0-20mA  DC
DEBNAR    PC4 系列
DEBNAR    RW000000-00
DEBNAR    MF 系列 流量傳感器
DEBNAR    PM000003
DEBNAR    UGT-MU
DEBNAR    ASK 31.3 200/5A 7049
DEBNAR    PU 系列 信號變送器
DEBNAR    PC000000
DEBNAR    96*96 0~40A LOT:27-05
DEBNAR    UR1111
DEBNAR    GZ0030
DEBNAR    AH000000
DEBNAR    CS000000
DEBNAR    TR111111
DEBNAR    MK000000-00
DEBNAR    EQ96SI
DEBNAR    EQR72_0-30/60/5A
DEBNAR    PC4 系列
DEBNAR    PC6 系列
DEBNAR    DD010010-000
DEBNAR    ES 系列 溫度傳感器
DEBNAR    PQ 96SI  0-1.2 kA
DEBNAR    PU0100
DEBNAR    EQR72 DC450V
DEBNAR    PVE5 系列
DEBNAR    EQR72 200/400/5A
DEBNAR    ID000000-0-8mbar
DEBNAR    PM000003
DEBNAR    DV3.031.131C
DEBNAR    EQR72_0-250/500/5A
DEBNAR    MA 系列 壓力傳感器
DEBNAR    FW011000
DEBNAR    DV000000
DEBNAR    FG000000
DEBNAR    PM000000
DEBNAR    PU0010
DEBNAR    TR111111
DEBNAR    UM030
DEBNAR    ET 系列 溫度傳感器
DEBNAR    DV3.606.776B
DEBNAR    PVS5 系列
DEBNAR    PC000000
DEBNAR    CV100000
DEBNAR    AST815 1250/1A 10VA cl0,5
DEBNAR    PQR72_-20-0-20mA  DC
DEBNAR    DV3.606.776B
DEBNAR    DT3.302.776B
DEBNAR    Code:96x96 5A 2 Range:0-5(10)A
DEBNAR    GZ0030
DEBNAR    MA 系列 壓力傳感器
DEBNAR    ES010001-100MM
DEBNAR    PVE40001.1522B
DEBNAR    CE0000
DEBNAR    PM000000
DEBNAR    FW 系列 重量傳感器

 

隨著白水封閉循環程度的不斷加深以及廢紙漿和高得率漿使用比例的不斷增加,抄紙體系中的膠體狀樹脂和膠黏物逐漸積累,嚴重影響了紙機的運行和產品的質量[1-2]。為了消除樹脂障礙,通常采用樹脂障礙控制劑如滑石粉、改性膨潤土等對樹脂進行吸附、降黏處理,或在造紙系統中加入聚乙烯亞胺、聚二烯丙基二甲基氯化銨、聚合氯化鋁等陽離子固著劑[3-5],使帶有負電荷的膠體類物質隨紙漿帶出抄紙系統,防止其積累形成樹脂障礙。水滑石是一種由帶正電荷的雙金屬氧化層和層間填充帶負電荷的陰離子構成的層狀化合物(layereddoublehydroxide,簡稱為LDH),由于具有良好的吸附和催化特性[6-7],獲得了迅速的發展。近年來,已有不少研究論證了水滑石及其焙燒產物(LDO)對紙漿中樹脂、膠黏物和陰離子干擾物吸附的可行性[8-14]。本研究利用具有親脂性、高比表面積和帶正電荷的水滑石類化合物吸附紙漿中的樹脂和膠黏物,通過其自身所帶的正電性或助留系統的助留作用固著到紙漿纖維上,防止樹脂和膠黏物在造紙系統中的積累,控制樹脂障礙的產生。本實驗采用共沉淀法合成了鎂鋁水滑石,*使用聚焦光束反射測量技術(FBRM)在線實時監測了水滑石的結晶過程,為水滑石生產過程的優化、結晶器的設計與操作提供了參考;同時以松香酸為樹脂模型物,研究了水滑石對松香酸的吸附過程,采用了3種吸附動力學模型,旨在從吸附動力學的角度進一步探討水滑石對樹脂的內在吸附機理。

1實驗

1.1藥品與儀器藥品Mg(NO3)2•6H2O、Al(NO3)3•9H2O、氨水等為分析純試劑;一級松香,純度≥99%,購自廣西。儀器L-550臺式離心機,湘儀離心機儀器有限公司;RW20數顯型頂置式攪拌器,依卡公司;BT101L流量型智能蠕動泵,保定雷弗流體科技有限公司;722型分光光度計,上海精密儀器科技有限公司;Tecnai型高分辨率透射電鏡(HRTEM),荷蘭菲利浦公司;S400聚焦光束反射測量儀,梅特勒-托利多公司;SMF-30箱式馬弗爐,上海大邁儀器有限公司。

1.2實驗方法

1.2.1水滑石的制備水滑石的合成裝置如圖1所示,實驗具體操作步驟為:(1)打開恒溫水浴鍋,維持系統溫度穩定在80℃。(2)向結晶器內加入一定量的Mg(NO3)2•6H2O、Al(NO3)3•9H2O(固定Mg與Al的摩爾比為3∶1)和去離子水,并開啟電動攪拌器使之溶解,攪拌速度設置為250r/min。(3)待體系溫度穩定后,開啟蠕動泵,以一定的速度將氨水溶液滴加到結晶器中,控制反應液的pH值在9.5~10.0之間。(4)沉淀反應完畢后恒溫老化9h,然后用一定量的去離子水在離心機上于3000r/min轉速下進行離心洗滌,直洗出白色膏狀沉淀,獲得層間陰離子為NO-3的水滑石樣品。(5)將上述合成的LDH放入馬弗爐中,在500℃高溫下焙燒4h,冷卻到室溫后研磨、破碎,過100目篩,制得焙燒水滑石。

1.2.2結晶過程的監測如圖1所示的實驗裝置中,在結晶器中將FBRM探頭安置于溶液中靠近攪拌棒邊緣處,運行在線粒度測量系統,進行數據采集,實時監測不同粒度區間的晶體個數變化。該系統的參數設定為:測量速度5m/s;測量時間7h;粒度分布數據采集不做加權平均處理。圖1實驗裝置示意圖

1.2.3水滑石的表征取適量的水滑石和焙燒水滑石粉末分別與無水乙醇在小燒杯中混合,超聲振蕩10min后,用玻璃毛細管吸取粉末和乙醇的均勻混合液,然后滴2~3滴該混合液體到微柵網上快速烘干后,利用HRTEM直接觀察合成樣品的形貌。

1.2.4水滑石對樹脂模型物的吸附動力學分析在溫度為298K的條件下,于pH值為7.0、質量濃度為200mg/L的松香酸溶液(制備方法見文獻[15])中,加入適量焙燒水滑石進行吸附實驗。采用可見分光光度法[16]于350nm處測定焙燒水滑石處理前后松香酸濃度的變化,并計算吸附量。研究吸附時間對吸附作用的影響,得到焙燒水滑石對松香的吸附動力學曲線。

2結果與討論

2.1水滑石的沉淀結晶沉淀結晶是一類重要的結晶過程,廣泛用于化工、醫藥、化肥、冶金等領域。結晶學研究的任務是確定結晶過程中成核、晶體生長及二次過程(包括聚結、破碎、老化等)的基本規律和基礎數據,以完善工藝條件、指導工業生產,在工業結晶過程研究中占有重要的地位[17]。本實驗采用聚焦光束反射測量儀監測水滑石的制備過程,實時在線測量結晶過程中晶體的弦長、數量和形狀變化情況。有不少研究認為晶體顆粒群度的平均粒度和平均弦長之間存在明確的比例關系,所以弦長分布(ChordLengthDistribu-tion,CLD)變化同樣反應了粒度分布(CSD)變化情況[18-19]。聚焦光束反射測量儀的工作原理如圖2所示。實驗開始時將圓柱形探頭置于所要觀測的體系中,探頭內激光二極管發射出的激光束經過一組復雜的透鏡組聚焦到一個很小的點上,并通過校準焦點使它位于探頭窗口與實際體系之間。聚焦光束在探頭窗口及顆粒體系之間進行環形掃描,遇到粒子后,在顆粒表面發生散射,一定比例的反射光經過設備的電子裝置后,產生脈沖信號。探頭監測到這些脈沖信號,以掃描速率(速度)乘以脈沖寬度(時間)通過簡單計算轉化為弦長。一般情況下,每秒鐘可測量數千個單個弦長,形成由FBRM基本測量獲得的弦長分布,無需頻繁采樣,便能夠對顆粒粒徑與粒數變化進行實時監測與控制,并利用在線數據理解并優化動態工藝過程[20]。測試結果如圖3~圖5所示。實驗用Mg(NO3)2•6H2O和Al(NO3)3•9H2O溶液作為反應底料,由蠕動泵以1mL/min的加料速率滴入氨水溶液,120min加完。隨著氨水溶液加入,體系的過飽和度逐漸升高,經過一段時間的誘導期后,發生了初級均相成核。在不受外界條件影響的情況下,溶液自發地產生晶核的過程叫做自發成核或初級均相成核[21]。由圖3可以看出,實驗進行到5min時,體系中出現了小于10μm弦長范圍的細小晶粒;圖4說明在前5min的誘導期內,粒度分布幾乎沒有變化,當自發成核產生時,10μm弦長以下的粒子出現上升趨勢;圖5則通過平均弦長的變化情況進一步說明了水滑石結晶過程需要經歷一定的誘導期。此后繼續加入氨水溶液,當達到超溶解度時,發生爆發成核,不同粒度區間晶體個數按照晶體由小到大的順序依次迅速上升并逐漸達到平衡。二次成核(爆發成核)是晶體主要的成核和生長過程,同時伴隨一定程度的聚結和破碎作用,過飽和度主要在這一階段被消耗。如圖4所示,實驗進行到23min時,各個粒度區間的晶體個數都開始迅速增加,尤其是10μm弦長以下細小晶體持續快速上升,說明了爆發成核期的開始;由圖3可以看出,在實驗進行到25min時,晶體個數瞬時增加了100~200倍;圖5驗證了二次成核期的結晶過程,即二次成核開始時體系的平均弦長迅速增加,而后部分晶體發生了破碎作用,導致體系的平均弦長減小。反應持續進行,體系的過飽和度已經較低,晶體的成核和生長繼續進行,但并不明顯,結晶過程逐漸轉入到熟化過程。實驗進行到2h后,氨水滴加完畢,隨著結晶過程的進行,過飽和度呈下降趨勢。圖4說明了過飽和度下降,直接影響了粒徑大的晶體顆粒數目的減少,而粒徑小的晶體數目繼續增加;由圖5可以看出,水滑石的平均粒徑略有減小;圖3反映了隨著熟化過程的進行,水滑石的粒徑分布變窄,在2~5h時間段內,主要集中在10μm弦長以下的顆粒數目的增加,實驗繼續進行到6h,顆粒數目增加不明顯,熟化過程基本結束。Sumeet等人采用水熱法合成了Mg、Al摩爾比為3∶1、層間陰離子為CO2-3的水滑石,并根據X射線衍射儀(XRD)分析得出6h的老化時間便可達到較高的結晶度[22],這與本實驗采用FBRM得出的結果接近。

2.2水滑石的表征為了進一步考察合成的水滑石樣品焙燒前后的形貌變化,對其進行了高分辨率透射電鏡分析,結果見圖6。從圖6(a)可以看出,合成的樣品大部分都具有較為規整的六邊形片狀形貌,平均直徑小于50nm,且顆粒大小分布均勻、規整,結晶狀態良好。從圖6(b)可以看出,焙燒后水滑石的晶體結構倒塌,失去了原有層狀結構的特征,形成無定形和多孔結構,增加了單位面積,吸附效果更好。

2.3水滑石的吸附動力學在樹脂酸溶液中,加入焙燒水滑石進行吸附實驗,研究吸附時間對吸附作用的影響,得到焙燒水滑石對樹脂模型物的吸附動力學曲線(見圖7)。吸附動力學研究的是吸附質在吸附劑上的吸附行為,其中單位時間內吸附劑在液相中吸附量變化的大小為吸附速率,它是描述吸附劑效率的重要參數。在吸附動力學(qt-t,qt為吸附量,t為吸附時間)曲線上,各點的斜率代表了瞬時吸附速率(dqt/dt)。由圖7可以看出,焙燒水滑石對松香酸的吸附開始時速率較快,隨著吸附時間的延長,吸附量逐漸增大,瞬時吸附速率逐漸減小。當吸附時間超過60min時,吸附量隨時間的延長略有增加,吸附速率已經很低。水滑石對于樹脂的吸附過程分為初始的快速反應階段和隨后的慢速反應階段,分別對應表面吸附和層間吸附過程,因為開始時吸附是一種表面作用,帶有負電荷的樹脂粒子與水滑石表面活性位(帶正電部位)之間的靜電作用為吸附動力,明顯帶有化學吸附的本質,吸附速率較大。接著的慢吸附是因為隨著吸附時間的延長,水滑石表面被帶有負電荷的樹脂粒子覆蓋后,活性位濃度降低,吸附動力逐漸減小,當水滑石與樹脂粒子之間的靜電吸引力減弱,僅是樹脂粒子向水滑石內部的遷移時,由于遷移速度較慢,所以這一過程的吸附速率較慢。在固-液吸附體系中,固體吸附劑表面的物理和化學性質并不是*均勻的[23],用一級或二級吸附速率方程對固-液吸附體系中的吸附進行描述有時誤差較大[24]。一般常用準一級動力學模型、準二級動力學模型或顆粒內擴散動力學模型來描述[25-27]。為了能全面研究該水滑石對樹脂的吸附動力學特性,找到適合描述此吸附過程的動力學模型,選用下面3種動力學模型來對圖7中的數據進行擬合,結果見圖8和表1。式中:t為吸附時間,min;qt、qe分別為t時刻和吸附達到平衡時的單位質量吸附量,mg/g;k1為準一級方程的吸附速率常數,min-1;k2為準二級程的吸附速率常數,g/(mg•min);kp為顆粒內擴散方程的吸附速率常數,mg/(g•min1/2)。由圖8可知,實驗數據與準一級動力學模型擬合所得趨勢線相差較大,而與準二級動力學模型擬合所得趨勢線呈良好的線性相關性,相關系數大(相關系數R2=0.9853),說明焙燒水滑石對模型樹脂的吸附動力學特性符合準二級動力學模型,這是因為盡管準一級方程已經廣泛地應用于各種吸附過程,但它的局限性在于準一級模型做圖前需要通過實驗確定qe,但在實際吸附過程中,不可能準確測得其平衡吸附量。相比之下,準二級模型包含了吸附的所有過程,如外部液膜擴散、表面吸附和顆粒內擴散等,所以準二級動力學模型更能全面反映吸附劑對樹脂粒子吸附的動力學機制[28]。因化學鍵的形成是影響準二級動力學吸附作用的主要因素,可推斷焙燒水滑石對樹脂的吸附是以化學吸附為速率控制步驟的,該吸附過程以化學吸附為主,這也與焙燒水滑石的功能基團與樹脂粒子反應機制一致。此外,由表1可知,實驗數據與顆粒內擴散動力學模型擬合所得趨勢線的線性相關系數R2≥0.9500,說明顆粒內擴散方程也能較好地描述吸附初始過程。

3結論

3.1聚焦光束反射測量儀可作為實時監測結晶過程的一種有效工具。3.2二次成核是水滑石沉淀結晶的主要過程,6h的老化時間便可得到較高結晶度的產品。高分辨率透射電鏡(HRTEM)分析證實了該法合成的水滑石具有典型的層片狀結構特征,焙燒后形成無定形和多孔結構。3.3焙燒水滑石對于模型樹脂的吸附過程可分為快速反應和慢速反應階段,分別對應表面吸附和層間吸附。準二級動力學方程和顆粒內擴散方程可以較好地描述吸附過程,尤其是準二級動力學方程能更好地描述整個吸附過程。


DEBNAR    BZ1U 10 32 400A/1V
DEBNAR    DN031111-0
DEBNAR    ES 系列 溫度傳感器
DEBNAR    EQR72*72 250/500/5A
DEBNAR    DV3.706.776B
DEBNAR    TR511111
DEBNAR    DEB96034
DEBNAR    EQR72_0-600/1200/5A
DEBNAR    DSCA33-04
DEBNAR    ASK81.4 2000A/1A  15VA  Ki=0.5
DEBNAR    BH-0.66 400A/5
DEBNAR    CA000000
DEBNAR    PT4 系列
DEBNAR    TR311111
DEBNAR    PS05
DEBNAR    DT3.202.776B
DEBNAR    ASK 18.4  電流互感器
DEBNAR    KS 系列 重量傳感器
DEBNAR    PQ96SI 0-20 mA
DEBNAR    EQR48  0-500V
DEBNAR    ASK123.3  3000/1
DEBNAR    SPDA96*48-1 0-20mA 0-20mA
DEBNAR    PC6 系列
DEBNAR    ASK81.4 2000/1A 15VA Kl.0,5 電流互感器
DEBNAR    DV3.506.736B
DEBNAR    PC 系列 信號轉換器
DEBNAR    DV3.506.776B
DEBNAR    ASK31.3  50/5A
DEBNAR    PTE4 系列
DEBNAR    EQR72_4/8A
DEBNAR    DE100000-160bar
DEBNAR    EQ96S  0-5 A
DEBNAR    TR 系列 溫度變送器
DEBNAR    PW4 系列
DEBNAR    TA00
DEBNAR    UMG 96S
DEBNAR    DS030000
DEBNAR    UM030
DEBNAR    MF000000-000
DEBNAR    ASK31.4  700/5A
DEBNAR    MN001400
DEBNAR    DACA33-06A
DEBNAR    EQR72 0-50/100/5A
DEBNAR    PS04
DEBNAR    LA 系列 信號放大器
DEBNAR    PS00
DEBNAR    PVE5 系列
DEBNAR    KS001000
DEBNAR    PTS5 系列
DEBNAR    SPDA96*48 4-20mA 0-1500A
DEBNAR    TR 系列 溫度變送器
DEBNAR    EQR72_0-300/600/5A
DEBNAR    SPDA96*48-2 0-20mA 0.5-1.0.5
DEBNAR    DS 系列 流量傳感器
DEBNAR    MF000000-000
DEBNAR    PQR72_0-20mA  DC
DEBNAR    UGT-MU
DEBNAR    PS01

 

隨著白水封閉循環程度的不斷加深以及廢紙漿和高得率漿使用比例的不斷增加,抄紙體系中的膠體狀樹脂和膠黏物逐漸積累,嚴重影響了紙機的運行和產品的質量[1-2]。為了消除樹脂障礙,通常采用樹脂障礙控制劑如滑石粉、改性膨潤土等對樹脂進行吸附、降黏處理,或在造紙系統中加入聚乙烯亞胺、聚二烯丙基二甲基氯化銨、聚合氯化鋁等陽離子固著劑[3-5],使帶有負電荷的膠體類物質隨紙漿帶出抄紙系統,防止其積累形成樹脂障礙。水滑石是一種由帶正電荷的雙金屬氧化層和層間填充帶負電荷的陰離子構成的層狀化合物(layereddoublehydroxide,簡稱為LDH),由于具有良好的吸附和催化特性[6-7],獲得了迅速的發展。近年來,已有不少研究論證了水滑石及其焙燒產物(LDO)對紙漿中樹脂、膠黏物和陰離子干擾物吸附的可行性[8-14]。本研究利用具有親脂性、高比表面積和帶正電荷的水滑石類化合物吸附紙漿中的樹脂和膠黏物,通過其自身所帶的正電性或助留系統的助留作用固著到紙漿纖維上,防止樹脂和膠黏物在造紙系統中的積累,控制樹脂障礙的產生。本實驗采用共沉淀法合成了鎂鋁水滑石,*使用聚焦光束反射測量技術(FBRM)在線實時監測了水滑石的結晶過程,為水滑石生產過程的優化、結晶器的設計與操作提供了參考;同時以松香酸為樹脂模型物,研究了水滑石對松香酸的吸附過程,采用了3種吸附動力學模型,旨在從吸附動力學的角度進一步探討水滑石對樹脂的內在吸附機理。

1實驗

1.1藥品與儀器藥品Mg(NO3)2•6H2O、Al(NO3)3•9H2O、氨水等為分析純試劑;一級松香,純度≥99%,購自廣西。儀器L-550臺式離心機,湘儀離心機儀器有限公司;RW20數顯型頂置式攪拌器,依卡公司;BT101L流量型智能蠕動泵,保定雷弗流體科技有限公司;722型分光光度計,上海精密儀器科技有限公司;Tecnai型高分辨率透射電鏡(HRTEM),荷蘭菲利浦公司;S400聚焦光束反射測量儀,梅特勒-托利多公司;SMF-30箱式馬弗爐,上海大邁儀器有限公司。

1.2實驗方法

1.2.1水滑石的制備水滑石的合成裝置如圖1所示,實驗具體操作步驟為:(1)打開恒溫水浴鍋,維持系統溫度穩定在80℃。(2)向結晶器內加入一定量的Mg(NO3)2•6H2O、Al(NO3)3•9H2O(固定Mg與Al的摩爾比為3∶1)和去離子水,并開啟電動攪拌器使之溶解,攪拌速度設置為250r/min。(3)待體系溫度穩定后,開啟蠕動泵,以一定的速度將氨水溶液滴加到結晶器中,控制反應液的pH值在9.5~10.0之間。(4)沉淀反應完畢后恒溫老化9h,然后用一定量的去離子水在離心機上于3000r/min轉速下進行離心洗滌,直洗出白色膏狀沉淀,獲得層間陰離子為NO-3的水滑石樣品。(5)將上述合成的LDH放入馬弗爐中,在500℃高溫下焙燒4h,冷卻到室溫后研磨、破碎,過100目篩,制得焙燒水滑石。

1.2.2結晶過程的監測如圖1所示的實驗裝置中,在結晶器中將FBRM探頭安置于溶液中靠近攪拌棒邊緣處,運行在線粒度測量系統,進行數據采集,實時監測不同粒度區間的晶體個數變化。該系統的參數設定為:測量速度5m/s;測量時間7h;粒度分布數據采集不做加權平均處理。圖1實驗裝置示意圖

1.2.3水滑石的表征取適量的水滑石和焙燒水滑石粉末分別與無水乙醇在小燒杯中混合,超聲振蕩10min后,用玻璃毛細管吸取粉末和乙醇的均勻混合液,然后滴2~3滴該混合液體到微柵網上快速烘干后,利用HRTEM直接觀察合成樣品的形貌。

1.2.4水滑石對樹脂模型物的吸附動力學分析在溫度為298K的條件下,于pH值為7.0、質量濃度為200mg/L的松香酸溶液(制備方法見文獻[15])中,加入適量焙燒水滑石進行吸附實驗。采用可見分光光度法[16]于350nm處測定焙燒水滑石處理前后松香酸濃度的變化,并計算吸附量。研究吸附時間對吸附作用的影響,得到焙燒水滑石對松香的吸附動力學曲線。

2結果與討論

2.1水滑石的沉淀結晶沉淀結晶是一類重要的結晶過程,廣泛用于化工、醫藥、化肥、冶金等領域。結晶學研究的任務是確定結晶過程中成核、晶體生長及二次過程(包括聚結、破碎、老化等)的基本規律和基礎數據,以完善工藝條件、指導工業生產,在工業結晶過程研究中占有重要的地位[17]。本實驗采用聚焦光束反射測量儀監測水滑石的制備過程,實時在線測量結晶過程中晶體的弦長、數量和形狀變化情況。有不少研究認為晶體顆粒群度的平均粒度和平均弦長之間存在明確的比例關系,所以弦長分布(ChordLengthDistribu-tion,CLD)變化同樣反應了粒度分布(CSD)變化情況[18-19]。聚焦光束反射測量儀的工作原理如圖2所示。實驗開始時將圓柱形探頭置于所要觀測的體系中,探頭內激光二極管發射出的激光束經過一組復雜的透鏡組聚焦到一個很小的點上,并通過校準焦點使它位于探頭窗口與實際體系之間。聚焦光束在探頭窗口及顆粒體系之間進行環形掃描,遇到粒子后,在顆粒表面發生散射,一定比例的反射光經過設備的電子裝置后,產生脈沖信號。探頭監測到這些脈沖信號,以掃描速率(速度)乘以脈沖寬度(時間)通過簡單計算轉化為弦長。一般情況下,每秒鐘可測量數千個單個弦長,形成由FBRM基本測量獲得的弦長分布,無需頻繁采樣,便能夠對顆粒粒徑與粒數變化進行實時監測與控制,并利用在線數據理解并優化動態工藝過程[20]。測試結果如圖3~圖5所示。實驗用Mg(NO3)2•6H2O和Al(NO3)3•9H2O溶液作為反應底料,由蠕動泵以1mL/min的加料速率滴入氨水溶液,120min加完。隨著氨水溶液加入,體系的過飽和度逐漸升高,經過一段時間的誘導期后,發生了初級均相成核。在不受外界條件影響的情況下,溶液自發地產生晶核的過程叫做自發成核或初級均相成核[21]。由圖3可以看出,實驗進行到5min時,體系中出現了小于10μm弦長范圍的細小晶粒;圖4說明在前5min的誘導期內,粒度分布幾乎沒有變化,當自發成核產生時,10μm弦長以下的粒子出現上升趨勢;圖5則通過平均弦長的變化情況進一步說明了水滑石結晶過程需要經歷一定的誘導期。此后繼續加入氨水溶液,當達到超溶解度時,發生爆發成核,不同粒度區間晶體個數按照晶體由小到大的順序依次迅速上升并逐漸達到平衡。二次成核(爆發成核)是晶體主要的成核和生長過程,同時伴隨一定程度的聚結和破碎作用,過飽和度主要在這一階段被消耗。如圖4所示,實驗進行到23min時,各個粒度區間的晶體個數都開始迅速增加,尤其是10μm弦長以下細小晶體持續快速上升,說明了爆發成核期的開始;由圖3可以看出,在實驗進行到25min時,晶體個數瞬時增加了100~200倍;圖5驗證了二次成核期的結晶過程,即二次成核開始時體系的平均弦長迅速增加,而后部分晶體發生了破碎作用,導致體系的平均弦長減小。反應持續進行,體系的過飽和度已經較低,晶體的成核和生長繼續進行,但并不明顯,結晶過程逐漸轉入到熟化過程。實驗進行到2h后,氨水滴加完畢,隨著結晶過程的進行,過飽和度呈下降趨勢。圖4說明了過飽和度下降,直接影響了粒徑大的晶體顆粒數目的減少,而粒徑小的晶體數目繼續增加;由圖5可以看出,水滑石的平均粒徑略有減小;圖3反映了隨著熟化過程的進行,水滑石的粒徑分布變窄,在2~5h時間段內,主要集中在10μm弦長以下的顆粒數目的增加,實驗繼續進行到6h,顆粒數目增加不明顯,熟化過程基本結束。Sumeet等人采用水熱法合成了Mg、Al摩爾比為3∶1、層間陰離子為CO2-3的水滑石,并根據X射線衍射儀(XRD)分析得出6h的老化時間便可達到較高的結晶度[22],這與本實驗采用FBRM得出的結果接近。

2.2水滑石的表征為了進一步考察合成的水滑石樣品焙燒前后的形貌變化,對其進行了高分辨率透射電鏡分析,結果見圖6。從圖6(a)可以看出,合成的樣品大部分都具有較為規整的六邊形片狀形貌,平均直徑小于50nm,且顆粒大小分布均勻、規整,結晶狀態良好。從圖6(b)可以看出,焙燒后水滑石的晶體結構倒塌,失去了原有層狀結構的特征,形成無定形和多孔結構,增加了單位面積,吸附效果更好。

2.3水滑石的吸附動力學在樹脂酸溶液中,加入焙燒水滑石進行吸附實驗,研究吸附時間對吸附作用的影響,得到焙燒水滑石對樹脂模型物的吸附動力學曲線(見圖7)。吸附動力學研究的是吸附質在吸附劑上的吸附行為,其中單位時間內吸附劑在液相中吸附量變化的大小為吸附速率,它是描述吸附劑效率的重要參數。在吸附動力學(qt-t,qt為吸附量,t為吸附時間)曲線上,各點的斜率代表了瞬時吸附速率(dqt/dt)。由圖7可以看出,焙燒水滑石對松香酸的吸附開始時速率較快,隨著吸附時間的延長,吸附量逐漸增大,瞬時吸附速率逐漸減小。當吸附時間超過60min時,吸附量隨時間的延長略有增加,吸附速率已經很低。水滑石對于樹脂的吸附過程分為初始的快速反應階段和隨后的慢速反應階段,分別對應表面吸附和層間吸附過程,因為開始時吸附是一種表面作用,帶有負電荷的樹脂粒子與水滑石表面活性位(帶正電部位)之間的靜電作用為吸附動力,明顯帶有化學吸附的本質,吸附速率較大。接著的慢吸附是因為隨著吸附時間的延長,水滑石表面被帶有負電荷的樹脂粒子覆蓋后,活性位濃度降低,吸附動力逐漸減小,當水滑石與樹脂粒子之間的靜電吸引力減弱,僅是樹脂粒子向水滑石內部的遷移時,由于遷移速度較慢,所以這一過程的吸附速率較慢。在固-液吸附體系中,固體吸附劑表面的物理和化學性質并不是*均勻的[23],用一級或二級吸附速率方程對固-液吸附體系中的吸附進行描述有時誤差較大[24]。一般常用準一級動力學模型、準二級動力學模型或顆粒內擴散動力學模型來描述[25-27]。為了能全面研究該水滑石對樹脂的吸附動力學特性,找到適合描述此吸附過程的動力學模型,選用下面3種動力學模型來對圖7中的數據進行擬合,結果見圖8和表1。式中:t為吸附時間,min;qt、qe分別為t時刻和吸附達到平衡時的單位質量吸附量,mg/g;k1為準一級方程的吸附速率常數,min-1;k2為準二級程的吸附速率常數,g/(mg•min);kp為顆粒內擴散方程的吸附速率常數,mg/(g•min1/2)。由圖8可知,實驗數據與準一級動力學模型擬合所得趨勢線相差較大,而與準二級動力學模型擬合所得趨勢線呈良好的線性相關性,相關系數大(相關系數R2=0.9853),說明焙燒水滑石對模型樹脂的吸附動力學特性符合準二級動力學模型,這是因為盡管準一級方程已經廣泛地應用于各種吸附過程,但它的局限性在于準一級模型做圖前需要通過實驗確定qe,但在實際吸附過程中,不可能準確測得其平衡吸附量。相比之下,準二級模型包含了吸附的所有過程,如外部液膜擴散、表面吸附和顆粒內擴散等,所以準二級動力學模型更能全面反映吸附劑對樹脂粒子吸附的動力學機制[28]。因化學鍵的形成是影響準二級動力學吸附作用的主要因素,可推斷焙燒水滑石對樹脂的吸附是以化學吸附為速率控制步驟的,該吸附過程以化學吸附為主,這也與焙燒水滑石的功能基團與樹脂粒子反應機制一致。此外,由表1可知,實驗數據與顆粒內擴散動力學模型擬合所得趨勢線的線性相關系數R2≥0.9500,說明顆粒內擴散方程也能較好地描述吸附初始過程。

3結論

3.1聚焦光束反射測量儀可作為實時監測結晶過程的一種有效工具。3.2二次成核是水滑石沉淀結晶的主要過程,6h的老化時間便可得到較高結晶度的產品。高分辨率透射電鏡(HRTEM)分析證實了該法合成的水滑石具有典型的層片狀結構特征,焙燒后形成無定形和多孔結構。3.3焙燒水滑石對于模型樹脂的吸附過程可分為快速反應和慢速反應階段,分別對應表面吸附和層間吸附。準二級動力學方程和顆粒內擴散方程可以較好地描述吸附過程,尤其是準二級動力學方程能更好地描述整個吸附過程。


DEBNAR    PS01
DEBNAR    TR611111
DEBNAR    SPDA96*48-4 0-20mA 0-500A
DEBNAR    PQ72S 100A 60MV
DEBNAR    SW 系列 流量控制器
DEBNAR    DV3.001.776B(48*24)
DEBNAR    PU0120
DEBNAR    PT4 系列
DEBNAR    AN 系列 信號放大器
DEBNAR    DN031111-0
DEBNAR    ASK 41.4
DEBNAR    CA000000
DEBNAR    ASK31.3400/1AKL.110VA
DEBNAR    RW 系列 溫度傳感器
DEBNAR    DV3.002.736B
DEBNAR    KS001000 KS002000
DEBNAR    PVS5 系列
DEBNAR    PS4 系列
DEBNAR    PFE4 系列
DEBNAR    EQR72_0-100/200/5A
DEBNAR    PU0000
DEBNAR    DV3.001.776B
DEBNAR    PM000020
DEBNAR    SU222
DEBNAR    AH 系列 信號放大器
DEBNAR    DV3.001.736B
DEBNAR    FG000000
DEBNAR    DS 系列 流量傳感器
DEBNAR    SPDA96*48-3 0-20mA 0-10A
DEBNAR    TA10
DEBNAR    DV3 系列
DEBNAR    DV3.001.130C
DEBNAR    PTS5 系列
DEBNAR    PM 系列 信號轉換器
DEBNAR    MA210000-700bar
DEBNAR    EQR48  2.5/5A
DEBNAR    ET010001-100MM
DEBNAR    AN000000-000
DEBNAR    GZ0020
DEBNAR    UR 系列 控制器
DEBNAR    PU0010
DEBNAR    PQ96SI 0-600V
DEBNAR    LF 系列 信號放大器
DEBNAR    DT3.606.776B
DEBNAR    EQR72 30A
DEBNAR    DM000100
DEBNAR    MF 系列 流量傳感器
DEBNAR    EQR72 10/20A
DEBNAR    W5632
DEBNAR    DM 系列 信號放大器

 

隨著白水封閉循環程度的不斷加深以及廢紙漿和高得率漿使用比例的不斷增加,抄紙體系中的膠體狀樹脂和膠黏物逐漸積累,嚴重影響了紙機的運行和產品的質量[1-2]。為了消除樹脂障礙,通常采用樹脂障礙控制劑如滑石粉、改性膨潤土等對樹脂進行吸附、降黏處理,或在造紙系統中加入聚乙烯亞胺、聚二烯丙基二甲基氯化銨、聚合氯化鋁等陽離子固著劑[3-5],使帶有負電荷的膠體類物質隨紙漿帶出抄紙系統,防止其積累形成樹脂障礙。水滑石是一種由帶正電荷的雙金屬氧化層和層間填充帶負電荷的陰離子構成的層狀化合物(layereddoublehydroxide,簡稱為LDH),由于具有良好的吸附和催化特性[6-7],獲得了迅速的發展。近年來,已有不少研究論證了水滑石及其焙燒產物(LDO)對紙漿中樹脂、膠黏物和陰離子干擾物吸附的可行性[8-14]。本研究利用具有親脂性、高比表面積和帶正電荷的水滑石類化合物吸附紙漿中的樹脂和膠黏物,通過其自身所帶的正電性或助留系統的助留作用固著到紙漿纖維上,防止樹脂和膠黏物在造紙系統中的積累,控制樹脂障礙的產生。本實驗采用共沉淀法合成了鎂鋁水滑石,*使用聚焦光束反射測量技術(FBRM)在線實時監測了水滑石的結晶過程,為水滑石生產過程的優化、結晶器的設計與操作提供了參考;同時以松香酸為樹脂模型物,研究了水滑石對松香酸的吸附過程,采用了3種吸附動力學模型,旨在從吸附動力學的角度進一步探討水滑石對樹脂的內在吸附機理。

1實驗

1.1藥品與儀器藥品Mg(NO3)2•6H2O、Al(NO3)3•9H2O、氨水等為分析純試劑;一級松香,純度≥99%,購自廣西。儀器L-550臺式離心機,湘儀離心機儀器有限公司;RW20數顯型頂置式攪拌器,依卡公司;BT101L流量型智能蠕動泵,保定雷弗流體科技有限公司;722型分光光度計,上海精密儀器科技有限公司;Tecnai型高分辨率透射電鏡(HRTEM),荷蘭菲利浦公司;S400聚焦光束反射測量儀,梅特勒-托利多公司;SMF-30箱式馬弗爐,上海大邁儀器有限公司。

1.2實驗方法

1.2.1水滑石的制備水滑石的合成裝置如圖1所示,實驗具體操作步驟為:(1)打開恒溫水浴鍋,維持系統溫度穩定在80℃。(2)向結晶器內加入一定量的Mg(NO3)2•6H2O、Al(NO3)3•9H2O(固定Mg與Al的摩爾比為3∶1)和去離子水,并開啟電動攪拌器使之溶解,攪拌速度設置為250r/min。(3)待體系溫度穩定后,開啟蠕動泵,以一定的速度將氨水溶液滴加到結晶器中,控制反應液的pH值在9.5~10.0之間。(4)沉淀反應完畢后恒溫老化9h,然后用一定量的去離子水在離心機上于3000r/min轉速下進行離心洗滌,直洗出白色膏狀沉淀,獲得層間陰離子為NO-3的水滑石樣品。(5)將上述合成的LDH放入馬弗爐中,在500℃高溫下焙燒4h,冷卻到室溫后研磨、破碎,過100目篩,制得焙燒水滑石。

1.2.2結晶過程的監測如圖1所示的實驗裝置中,在結晶器中將FBRM探頭安置于溶液中靠近攪拌棒邊緣處,運行在線粒度測量系統,進行數據采集,實時監測不同粒度區間的晶體個數變化。該系統的參數設定為:測量速度5m/s;測量時間7h;粒度分布數據采集不做加權平均處理。圖1實驗裝置示意圖

1.2.3水滑石的表征取適量的水滑石和焙燒水滑石粉末分別與無水乙醇在小燒杯中混合,超聲振蕩10min后,用玻璃毛細管吸取粉末和乙醇的均勻混合液,然后滴2~3滴該混合液體到微柵網上快速烘干后,利用HRTEM直接觀察合成樣品的形貌。

1.2.4水滑石對樹脂模型物的吸附動力學分析在溫度為298K的條件下,于pH值為7.0、質量濃度為200mg/L的松香酸溶液(制備方法見文獻[15])中,加入適量焙燒水滑石進行吸附實驗。采用可見分光光度法[16]于350nm處測定焙燒水滑石處理前后松香酸濃度的變化,并計算吸附量。研究吸附時間對吸附作用的影響,得到焙燒水滑石對松香的吸附動力學曲線。

2結果與討論

2.1水滑石的沉淀結晶沉淀結晶是一類重要的結晶過程,廣泛用于化工、醫藥、化肥、冶金等領域。結晶學研究的任務是確定結晶過程中成核、晶體生長及二次過程(包括聚結、破碎、老化等)的基本規律和基礎數據,以完善工藝條件、指導工業生產,在工業結晶過程研究中占有重要的地位[17]。本實驗采用聚焦光束反射測量儀監測水滑石的制備過程,實時在線測量結晶過程中晶體的弦長、數量和形狀變化情況。有不少研究認為晶體顆粒群度的平均粒度和平均弦長之間存在明確的比例關系,所以弦長分布(ChordLengthDistribu-tion,CLD)變化同樣反應了粒度分布(CSD)變化情況[18-19]。聚焦光束反射測量儀的工作原理如圖2所示。實驗開始時將圓柱形探頭置于所要觀測的體系中,探頭內激光二極管發射出的激光束經過一組復雜的透鏡組聚焦到一個很小的點上,并通過校準焦點使它位于探頭窗口與實際體系之間。聚焦光束在探頭窗口及顆粒體系之間進行環形掃描,遇到粒子后,在顆粒表面發生散射,一定比例的反射光經過設備的電子裝置后,產生脈沖信號。探頭監測到這些脈沖信號,以掃描速率(速度)乘以脈沖寬度(時間)通過簡單計算轉化為弦長。一般情況下,每秒鐘可測量數千個單個弦長,形成由FBRM基本測量獲得的弦長分布,無需頻繁采樣,便能夠對顆粒粒徑與粒數變化進行實時監測與控制,并利用在線數據理解并優化動態工藝過程[20]。測試結果如圖3~圖5所示。實驗用Mg(NO3)2•6H2O和Al(NO3)3•9H2O溶液作為反應底料,由蠕動泵以1mL/min的加料速率滴入氨水溶液,120min加完。隨著氨水溶液加入,體系的過飽和度逐漸升高,經過一段時間的誘導期后,發生了初級均相成核。在不受外界條件影響的情況下,溶液自發地產生晶核的過程叫做自發成核或初級均相成核[21]。由圖3可以看出,實驗進行到5min時,體系中出現了小于10μm弦長范圍的細小晶粒;圖4說明在前5min的誘導期內,粒度分布幾乎沒有變化,當自發成核產生時,10μm弦長以下的粒子出現上升趨勢;圖5則通過平均弦長的變化情況進一步說明了水滑石結晶過程需要經歷一定的誘導期。此后繼續加入氨水溶液,當達到超溶解度時,發生爆發成核,不同粒度區間晶體個數按照晶體由小到大的順序依次迅速上升并逐漸達到平衡。二次成核(爆發成核)是晶體主要的成核和生長過程,同時伴隨一定程度的聚結和破碎作用,過飽和度主要在這一階段被消耗。如圖4所示,實驗進行到23min時,各個粒度區間的晶體個數都開始迅速增加,尤其是10μm弦長以下細小晶體持續快速上升,說明了爆發成核期的開始;由圖3可以看出,在實驗進行到25min時,晶體個數瞬時增加了100~200倍;圖5驗證了二次成核期的結晶過程,即二次成核開始時體系的平均弦長迅速增加,而后部分晶體發生了破碎作用,導致體系的平均弦長減小。反應持續進行,體系的過飽和度已經較低,晶體的成核和生長繼續進行,但并不明顯,結晶過程逐漸轉入到熟化過程。實驗進行到2h后,氨水滴加完畢,隨著結晶過程的進行,過飽和度呈下降趨勢。圖4說明了過飽和度下降,直接影響了粒徑大的晶體顆粒數目的減少,而粒徑小的晶體數目繼續增加;由圖5可以看出,水滑石的平均粒徑略有減小;圖3反映了隨著熟化過程的進行,水滑石的粒徑分布變窄,在2~5h時間段內,主要集中在10μm弦長以下的顆粒數目的增加,實驗繼續進行到6h,顆粒數目增加不明顯,熟化過程基本結束。Sumeet等人采用水熱法合成了Mg、Al摩爾比為3∶1、層間陰離子為CO2-3的水滑石,并根據X射線衍射儀(XRD)分析得出6h的老化時間便可達到較高的結晶度[22],這與本實驗采用FBRM得出的結果接近。

2.2水滑石的表征為了進一步考察合成的水滑石樣品焙燒前后的形貌變化,對其進行了高分辨率透射電鏡分析,結果見圖6。從圖6(a)可以看出,合成的樣品大部分都具有較為規整的六邊形片狀形貌,平均直徑小于50nm,且顆粒大小分布均勻、規整,結晶狀態良好。從圖6(b)可以看出,焙燒后水滑石的晶體結構倒塌,失去了原有層狀結構的特征,形成無定形和多孔結構,增加了單位面積,吸附效果更好。

2.3水滑石的吸附動力學在樹脂酸溶液中,加入焙燒水滑石進行吸附實驗,研究吸附時間對吸附作用的影響,得到焙燒水滑石對樹脂模型物的吸附動力學曲線(見圖7)。吸附動力學研究的是吸附質在吸附劑上的吸附行為,其中單位時間內吸附劑在液相中吸附量變化的大小為吸附速率,它是描述吸附劑效率的重要參數。在吸附動力學(qt-t,qt為吸附量,t為吸附時間)曲線上,各點的斜率代表了瞬時吸附速率(dqt/dt)。由圖7可以看出,焙燒水滑石對松香酸的吸附開始時速率較快,隨著吸附時間的延長,吸附量逐漸增大,瞬時吸附速率逐漸減小。當吸附時間超過60min時,吸附量隨時間的延長略有增加,吸附速率已經很低。水滑石對于樹脂的吸附過程分為初始的快速反應階段和隨后的慢速反應階段,分別對應表面吸附和層間吸附過程,因為開始時吸附是一種表面作用,帶有負電荷的樹脂粒子與水滑石表面活性位(帶正電部位)之間的靜電作用為吸附動力,明顯帶有化學吸附的本質,吸附速率較大。接著的慢吸附是因為隨著吸附時間的延長,水滑石表面被帶有負電荷的樹脂粒子覆蓋后,活性位濃度降低,吸附動力逐漸減小,當水滑石與樹脂粒子之間的靜電吸引力減弱,僅是樹脂粒子向水滑石內部的遷移時,由于遷移速度較慢,所以這一過程的吸附速率較慢。在固-液吸附體系中,固體吸附劑表面的物理和化學性質并不是*均勻的[23],用一級或二級吸附速率方程對固-液吸附體系中的吸附進行描述有時誤差較大[24]。一般常用準一級動力學模型、準二級動力學模型或顆粒內擴散動力學模型來描述[25-27]。為了能全面研究該水滑石對樹脂的吸附動力學特性,找到適合描述此吸附過程的動力學模型,選用下面3種動力學模型來對圖7中的數據進行擬合,結果見圖8和表1。式中:t為吸附時間,min;qt、qe分別為t時刻和吸附達到平衡時的單位質量吸附量,mg/g;k1為準一級方程的吸附速率常數,min-1;k2為準二級程的吸附速率常數,g/(mg•min);kp為顆粒內擴散方程的吸附速率常數,mg/(g•min1/2)。由圖8可知,實驗數據與準一級動力學模型擬合所得趨勢線相差較大,而與準二級動力學模型擬合所得趨勢線呈良好的線性相關性,相關系數大(相關系數R2=0.9853),說明焙燒水滑石對模型樹脂的吸附動力學特性符合準二級動力學模型,這是因為盡管準一級方程已經廣泛地應用于各種吸附過程,但它的局限性在于準一級模型做圖前需要通過實驗確定qe,但在實際吸附過程中,不可能準確測得其平衡吸附量。相比之下,準二級模型包含了吸附的所有過程,如外部液膜擴散、表面吸附和顆粒內擴散等,所以準二級動力學模型更能全面反映吸附劑對樹脂粒子吸附的動力學機制[28]。因化學鍵的形成是影響準二級動力學吸附作用的主要因素,可推斷焙燒水滑石對樹脂的吸附是以化學吸附為速率控制步驟的,該吸附過程以化學吸附為主,這也與焙燒水滑石的功能基團與樹脂粒子反應機制一致。此外,由表1可知,實驗數據與顆粒內擴散動力學模型擬合所得趨勢線的線性相關系數R2≥0.9500,說明顆粒內擴散方程也能較好地描述吸附初始過程。

3結論

3.1聚焦光束反射測量儀可作為實時監測結晶過程的一種有效工具。3.2二次成核是水滑石沉淀結晶的主要過程,6h的老化時間便可得到較高結晶度的產品。高分辨率透射電鏡(HRTEM)分析證實了該法合成的水滑石具有典型的層片狀結構特征,焙燒后形成無定形和多孔結構。3.3焙燒水滑石對于模型樹脂的吸附過程可分為快速反應和慢速反應階段,分別對應表面吸附和層間吸附。準二級動力學方程和顆粒內擴散方程可以較好地描述吸附過程,尤其是準二級動力學方程能更好地描述整個吸附過程。


留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7
主站蜘蛛池模板: 麻豆国产人妻欲求不满谁演的 | 免费看搡女人无遮挡的视频 | 日本三级香港三级网站 | 久久亚洲欧美成人精品 | 亚洲日韩中文字幕在线播放 | 91成人免费网站 | 国产黄视频在线观看 | av激情亚洲男人的天堂 | 中文字幕无码无码专区 | 日韩精品一区二区三区中文在线 | 香港一级毛片免费看 | 国产高清不卡无码视频 | 成人欧美一区二区三区在线播放 | 黄视频网站在线看 | 少妇厨房愉情理9仑片视频 少妇厨房愉情理伦bd在线观看 | 亚洲国产精品一区二区第一页 | 人妻熟女久久久久久久 | 亚洲欧美日韩精品久久奇米色影视 | 揄拍成人国产精品视频 | 在线观看国产日韩欧美 | 欧美老熟妇xb水多毛多 | 国产高清精品一区 | 日日噜噜夜夜狠狠久久无码区 | 波多野结衣美乳人妻hd电影欧美 | 国内视频在线 | 久久久久久综合岛国免费观看 | 亚洲国产果冻传媒av在线观看 | 亚洲精品第一综合99久久 | 亚洲综合伊人久久综合 | 日本少妇春药特殊按摩3 | 国产精品无码2021在线观看 | 久久伊99综合婷婷久久伊 | 秋霞伊人| 国产揄拍国产精品人妻蜜 | 动漫福利在线观看 | 欧美一级黄色录相 | 巨大黑人极品videos精品 | 无码人妻精品一区二区三区在线 | 亚洲一区二区三区播放 | 作爱视频免费观看 | 久久99亚洲网美利坚合众国 | 国产成人久久精品二区三区 | 男人边做边吃奶头视频 | 白天躁晚上躁麻豆视频 | 在线视频 中文字幕 | 天天操夜夜爽 | 四虎影院在线 | 日韩免费一区二区 | 精品无码国产一区二区日本 | 亚洲欧美人成网站aaa | 国产一有一级毛片视频 | 欧美成人a级在线视频 | 日本综合在线 | 亚洲欧美日韩精品中文乱码 | 国产真人无遮挡作爱免费视频 | 好看的91视频 | 久久天天躁狠狠躁夜夜免费观看 | 国产亚洲精品日韩香蕉网 | 无码日本精品一区二区片 | 精品欧美一区二区在线看片 | 狠狠色婷婷丁香六月 | 亚洲第一成年免费网站 | 日韩人妻无码一区二区三区综合部 | 黄又色又污又爽又高潮动态图 | 亚洲伦理中文字幕 | 热久久精品在线 | 国产精品久久久久久免费软件 | 免费观看一级毛片 | 免费黄色的视频 | 乱妇乱女熟妇熟女网站 | 精品一卡2卡三卡4卡免费观看 | wwwwww日本| 粗壮挺进人妻水蜜桃成熟漫画 | 国产精品亚韩精品无码a在线 | 亚洲综合图片色婷婷另类小说 | 午夜电影网址 | 亚洲福利 | 日日摸日日添夜夜爽97 | 国产精品揄拍100视频 | 精品视频一区二区三区免费 | 91精品国产免费久久 | a爱片 | 亚洲五月天综合 | 国产精品成人一区无码 | 久久99精品久久久久子伦 | 少妇人妻14页_麻花色 | 亚洲精品美女久久久 | 久久久久久国产精品免费免费狐狸 | 中日韩精品视频在线观看 | 亚洲精品无码一区二区三区久久久 | 久久久久久久极品内射 | a级在线观看| 久久精品国产99久久6动漫亮点 | 国产激情久久久久久熟女老人AV | 久久久久亚洲精品无码网址色欲 | 色欲av无码一区二区人妻 | www.国产福利 | 少妇精品久久久一区二区三区 | 91一区二区三区 | 国产丝袜美女 | 日本一区二区不卡 | 夜夜爽夜夜叫夜夜高潮漏水 | 白嫩日本少妇做爰 | 久久精品一 | а√天堂资源中文最新版地址 | 欧美中日韩免费观看网站 | 精品国产18久久久久久二百 | 亚洲综合精品一区二区三区中文 | 97理论三级九七午夜在线观看 | 午夜小电影 | 污视频网站在线免费看 | 天天视频在线播放观看视频 | 国产在线国偷精品免费看 | 久久1区| 成人亚洲一区二区色情无码潘金莲 | 国产一级毛片高清视频完整版 | 久久狠狠一本精品综合网 | 国产精品香蕉在线观看 | 午夜网 | 国产精品人人妻人人爽 | 日本一区二区视频 | 免费在线日韩 | 日本亲近相奷中文字幕 | 中文字幕人妻无码系列第三区 | 99re99| 亚洲国产精品a一区 | 日本无码成人片在线观看波多 | 午夜视频一区二区三区 | 尤物国产 | 亚洲欧美日韩一级特黄在线 | 久久草在线视频 | 色婷婷五 | 大地资源中文第三页 | 国产色婷婷 | 欧美三级 在线播放 | 国产精品字幕 | 人人妻人人澡人人爽人人精品 | 亚洲精品国偷拍自产在线观看蜜臀 | 久久国产一区二区三区 | 少妇高潮喷水久久久影院 | 日韩精品免费在线视频 | 精品久久久久久久久久久久久久 | 欧美在线精品一区二区在线观看 | 亚洲伊人久久综合影院 | 日韩一卡2卡3卡4卡新区亚洲 | 精品人妻人人做人人爽 | 亚洲精品久久久久久久久久吃药 | 欧美亚洲激情视频 | 奇米影视7777久久精品人人爽 | 影音先锋亚洲资源 | 亚洲欧美视频一区二区 | 无码毛片aaa在线 | 国产成人精品亚洲777人妖 | 日本在线免费观看视频 | 国产小视频精品 | 国产白袜脚足j棉袜在线观看 | 国产a√精品区二区三区四区 | 四虎影视最新网站在线播放 | 午夜福利理论片高清在线观看 | 人人爽久久涩噜噜噜蜜桃 | 人人妻人人澡人人爽 | 苏晓晖个人简介军衔 | 一级做a爰片久久毛片人呢 达达兔午夜起神影院在线观看麻烦 | 国产成人福利 | 草草久久久无码国产专区 | 蜜臀av人妻国产精品建身房 | 亚洲精品乱码久久久久久蜜桃图片 | 全程粗话对白视频videos | 国产精品51麻豆cm传媒 | 国模无水印一区二区三区 | 一区二区三区四区电影 | 久草精品视频 | 免费国产自久久久久三四区久久 | 男人的天堂亚洲 | 久久午夜影院 | 成人性爱视频在线观看 | 狠狠噜天天噜日日噜无码 | 久久久精彩视频 | 全毛片| 精品卡1卡二卡3卡 | 99激情视频 | 99精彩视频 | 91在线 在线播放 | 久久成人精品视频 | 久久制服丝袜 | 日韩欧美不卡 | 日韩精品小视频 | 夜夜夜夜爽 | 中文字幕无码精品三级在线电影 | 国产亚洲精品久久久久久线投注 | 97久久久久人妻精品区一 | 999在线| 日韩手机专区 | 国产精品综合色区小说 | 国产女人乱人伦精品一区二区 | 天天噜噜噜在线视频 | 精品欧美一区二区三区久久久 | 熟妇人妻中文av无码 | 国产女主播白浆在线观看 | 久久综合九色婷婷97 | 免费毛片在线视频 | 日产国产精品久久久久久 | 亚洲午夜无码毛片AV久久 | 国产精品久久久久久久网站 | 一区二区三区在线 | 日本 | 国产免费一区二区 | 日本午夜大片免费观看视频 | 人妻少妇邻居少妇好多水在线 | 国产精品二区一区二区aⅴ污介绍 | 香港三级韩国三级日本三级 | 一区二区精品 | 国产成人18黄网站免费 | 天堂国产一区二区三区四区不卡 | 欧美高清成人 | a视频在线播放 | 亚洲伦理中文字幕 | 偷拍自拍视频网 | 乱人伦人妻中文字幕无码久久网 | 日本边添边摸边做边爱喷水 | 一日本道a高清免费播放 | 特级一级毛片免费看 | 永久免费的av在线电影网无码 | 久久精品伊人 | 欧美a区| 日本午夜免费无码片三汲大片 | 少妇人妻14页_麻花色 | 新超碰97| 少妇爆乳无码专区网站 | 国产精品无码mv在线观看 | 美国一级毛片片aaa 香蕉视频在线观看免费 | 国产黑色丝袜在线观看片不卡顿 | 成人国产精品齐天大性 | 国产高清在线观看av | 99精品久久精品一区二区 | 一本色道久久综合 | 久久99青青精品免费观看 | 国产伦精品免编号公布 | 丝袜老师办公室里做好紧好爽 | 久久精品网 | 精品国产乱码久久久久久夜深人妻 | 欧美成人一区二区三区在线观看 | 午夜影院18 | 欧美牲交a欧美牲交aⅴ免费真 | 亚洲激情视频在线观看 | 国产成人精品a视频一区 | 国产一级免费在线观看 | 欧美精品www | 日本一区二区免费看 | 一区二区三区四区国产精品视频 | 午夜福利三级理论电影 | 美国一级欧美三级 | 国产熟女高潮视频 | 久久久久久天天夜夜天天 | 日本高清视频在线www色 | 色综合激情| 欧美 日韩 国产 成人 在线观看 | 欧美群妇大交群 | 999精品免费视频 | 国产资源网站 | 黄色一级小视频 | 日本91 | 亚洲精品亚洲人成在线观看 | www一区二区 | 一区二区三区午夜免费福利视频 | 国产精品入口免费视频 | 日日操av | 欧美日韩网址 | 亚洲成a人v大片在线观看 | sese在线视频| 国产这里有精品 | 奇米777四色影视在线看 | 玖玖在线精品 | 日出水了视频大全 | 在线天堂www在线国语对白 | 337p大胆啪啪私拍人体 | 人妻在厨房被色诱 中文字幕 | 排球少年第五季樱花动漫免费观看 | 精品久久久久久久无码人妻热 | 亚洲色婷婷婷婷五月 | 97日日摸天天碰免费视频 | 成人在线 | 成人午夜毛片 | 久久精品国产精品国产精品污 | 国产sm调教视频在线观看 | 91视频一区 | 99免费| 粉嫩av国产一区二区三区 | 亚州老熟女A片AV色欲小说 | 99久久人人爽亚洲精品美女 | 亚洲精品乱码久久久久久金桔影视 | 99久久精品免费观看区一 | 日韩精品亚洲人成在线 | 在线观看无码不卡av中文 | 国产一级免费不卡 | 天天躁天天碰天天看 | 久久久网站亚洲第一 | 热99这里只有精品 | 日本夜爽爽一区二区三区 | 欧美―第一页―浮力影院 | 国产自偷自偷免费一区 | 激情亚洲视频 | 一区不卡| 久久亚洲精品11p | 国产午夜精品一区二区三区在线观看 | 亚洲精品欧美一区二区三区 | 欧美ab在线 | 黑人上司好猛我好爽中文字幕 | 人妻另类 专区 欧美 制服 | 天天躁日日躁狠狠躁欧美老妇小说 | 无码人妻啪啪一区二区 | 久久精品成人一区二区三区 | 精品欧美日韩 | 日本中文字幕免费 | 丰满少妇熟乱xxxxx视频 | 精品久久久久久久久久 | 国产97色在线 | 免 | 日本丶国产丶欧美色综合 | 特黄特色大片免费播放 | 99re在线视频| 国产乱码精品一区二区三区四川人 | 一区二区三区日韩视频在线观看 | 国产精品人妻一码二码尿失禁 | 人禽杂交18禁网站免费 | 一级毛片免费电影 | 九一国产在线观看 | a视频在线观看 | 妞干网在线观看 | 18黄暴禁片在线观看 | 激情国产av做激情国产爱 | 日日欧美 | 久久精品无码专区免费东京热 | 一呦二呦三呦国产精品 | 亚洲区在线播放 | 国产又猛又黄又爽 | 又嫩又硬又黄又爽的视频 | av播放在线| 欧美精品一区二区蜜臀亚洲 | 一区二区三区四区视频 | 日韩国产在线 | 成人午夜精品无码区久久 | 国产日产人妻精品精品 | 久久精品国产99国产精品 | 亚洲欧美日韩中文字幕在线不卡 | 我和我的祖国电影在线观看免费版高清 | 欧美午夜视频 | 91高清在线成人免费观看 | 国产成人久久精品77777综合 | 精品少妇一区二区三区视频 | 久久综合性 | 性开放的欧美大片按摩 | 午夜视频在线观看免费视频 | 婷婷香蕉 | 国产欧美高清 | 日韩av免费在线观看 | 91成人精品 | 武松2013| 久久99精品国产.久久久久 | 精品无码成人片一区二区 | 亚洲中文字幕在线第六区 |